

Continuous Speech Recognition and English Grammar correction

on Android Platform

Prof.K.T.Talele Milind Jadhav Siddhesh Salgaonkar Aniruddha Mandale

Sardar Patel Institute Sardar Patel Institute Sardar Patel Institute Sardar Patel Institute

of Technology of Technology of Technology of Technology

talelesir@gmail.com milind.jadhav27391@gmail.com siddhesh21ace@gmail.com aniruddham@gmail.com

Abstract—This paper introduces a speech recognition system

of English language sentences followed by grammar

correction using LanguageTool. The acoustic model of this

system is provided by CMUSphinx, and the language model

is acquired from the lmtool web service. This system makes

use of PocketSphinx recognition engine as a decoder. In

addition, the system uses LanguageTool, an open source style

and grammar checker for grammatical correction of

recognized speech. The entire system is deployed on the

Android platform.

Our aim through this project is to develop a system

which provides on the fly speech correction facility. Thus the

operating system used is Android being the most popular

and adaptable mobile platform.

Keywords- Sphinx; speech recognition; language model;

LanguageTool

I. INTRODUCTION

parts of this system will be introduced separately.

Figure 1.Basic structure of proposed system

It is often seen that when students from a vernacular

medium of education in India enroll in junior colleges,

they face tremendous difficulties in delivering fluent,
grammatically correct and confident speeches. People

from other sectors also face difficulties in speaking

proper, fluent English. For them, this system will be very

useful, as it is a mobile application running on the

Android platform.

A mobile application running on the Android OS, This

system will provide on-the-fly speech correction facility.

Before delivering a speech or speaking in a group

discussion these students can speak into it. It will provide

users with a facility for recording their speech upon which

grammatical corrections will be applied on it. After they

finish speaking, the system will immediately correct their
speech. Thus, it will be of good use to the vernacular pass-

outs and will greatly help all the sectors of the society who

want to improve their verbal and communication skills.

Pocketsphinx [1], which is developed by CMU is an

embedded speech recognition engine used for fast speech

recognition, has very high recognition rate in English

continuous speech recognition. By means of this

recognition engine and through training the acoustic

model and language model, a Speech recognition system

of high-performance is built. This is followed by feeding

this recognized text to the LanguageTool for grammar
correction.

II. STRUCTURE OF THE SYSTEM

The proposed system consists of feature extraction,

acoustic model, language model, recognition engine and a

grammar correction module. The block diagram in Fig.1

depicts the overall processing. In the following text, these

A. Feature Extraction
SphinxBase, which is known as the famous public

library of Sphinx speech recognition project of CMU,
mainly uses Mel-Frequency Cepstral Coefficients
(MFCC) to carry out the front feature extraction of speech
recognition system. The processing is divided into seven
stages as shown in Fig.2.

Figure 2.Flow chart of MFCC

Feature extraction, referred to the front-end processing,

generates a set of 51-dimension feature vectors
representing the important characteristics of speech
signals. In short, MFCC converts the stream of speech data
sampled at 16 KHz to 12-element Mel-scale frequency
cepstrum vector and a power coefficient. [2]

Grammar

correction

Grammar

Correction

mailto:talelesir@gmail.com
mailto:milind.jadhav27391@gmail.com
mailto:siddhesh21ace@gmail.com

B. Language Model Training

Cmuclmtk (CMU-Cambridge Statistical Language

Modeling Toolkit) is used to train the language models. A
large number of text data is taken as input. Bigram or

Trigram Language Models, which mean that the

probability of the occurrences of a word only depends on

the previous one or two words, is produced in ARPA

format. Then, the file of ARPA format can be converted

into binary dump file by using Lm3g2dmp utility. The

basic flow [3] in generating a language model is shown in

Fig.3.

Figure 3.Flow chart of language model training

C. PocketSphinx

PocketSphinx is a decoding engine for speech

recognition system developed at CMU. It consists of a set

of libraries that include core speech recognition functions.

The libraries are written in C and have been compiled on

Linux and Windows XP.
The input of PocketSphinx is audio file in wave format,

which can be obtained by microphone input or by reading
wave files directly, and the final output of the recognition
results are displayed as text. The algorithms of

recognition engine mainly include four parts: the
calculation of acoustic parameter, the calculation of

Gaussian function, the calculation of Gaussian mixture

model and Viterbi search. The search algorithm of

decoder mainly uses Viterbi-Beam search algorithm [4].

In the search processing, it continually looks for the

possible optimal state subsequence and records the

matching information, and then prunes them according to

different clipping thresholds on different levels. After

processing all of the feature vectors, trace back to obtain

the optimal word sequence.

D. Grammar Correction

LanguageTool, [5] the style and grammar checker

used in this system takes a text and returns a list of
possible errors. To detect errors, each word of the text is

assigned its part-of-speech tag and each sentence is split

into chunks, e.g. noun phrases. Then the text is matched

against all the checker‟s pre-defined error rules. If a rule

matches, the text is supposed to contain an error at the

position of the match. The rules describe errors as patterns

of words, part-of-speech tags and chunks. The process is

divided into following tasks as explained below.

D.1. Part-of-Speech Tagging

Part-of-speech tagging (POS tagging or just tagging) is

the task of assigning each word its POS tag. It is not strictly
defined what POS tags exist, but the most common ones are

noun, verb, determiner, adjective and adverb. Nouns can

be further divided into singular and plural nouns, verbs

can be divided into past tense verbs and present tense verbs

and so on.

The more POS tags there are, the more difficult it

becomes - especially for an algorithm - to find the right tag

for a given occurrence of a word, since many words can

have different POS tags, depending on their context. In

English, many words can be used both as nouns and as

verbs. For example house (a building) and house (to

provide shelter). Only about 11.5% percent of all words
are ambiguous with regard to their POS tags, but since

these are the more often occurring words, 40% percent of

the words in a text are usually ambiguous.POS tagging is

thus a typical disambiguation problem: all possible tags of a

word are known and the appropriate one for a given context

needs to be chosen.

Even by simply selecting the POS tag which occurs

most often for a given word - without taking context into

account - one can assign 91% of the words their correct

tag. Taggers which are mostly based on statistical analysis

of large corpora have an accuracy of 95-97%.

D.2. Phrase Chunking

Phrase Chunking is situated between POS tagging and

a full-blown grammatical analysis: whereas POS tagging

only works on the word level, and grammar analysis (i.e.

parsing) is supposed to build a tree structure of a sentence,

phrase chunking assigns a tag to word sequences of a
sentence.

Typical chunks are noun phrase (NP) and verb phrase

(VP). Noun phrases typically consist of deter- miners,

adjectives and nouns or pronouns. Verb phrases can consist

of a single verb or of an auxiliary verb plus infinitive. For

example, the dog, the big dog, the big brown dog are all

examples of noun phrases. As the list of adjectives can

become infinitely long, noun phrases can theoretically

grow without a limit. However, what is called noun phrase

here is just an example and just like in POS tagging

everybody can make up his own chunk names and their
meanings.

Chunking works on a POS tagged text just like POS

tagging works on words: either there are handwritten rules

that describe which POS tag sequences build which

chunks, or a probabilistic chunker is trained on a POS

tagged and chunked text. These methods can be combined

by transferring the knowledge of a probabilistic chunker to

rules.

As chunking requires a POS tagged text, its accuracy

cannot be better than that of the POS tagger used. This is

backed by the fact that even the best chunker listed on

[Chunking] reaches a precision and recall of 94%, which is
less than an average tagger can achieve.

D.3. Grammar Checking

Rule-based checking: In this approach, a set of rules

is matched against a text which has at least been POS
tagged. It has many advantages:

1) A sentence does not have to be complete to be

checked, instead the software can check the text while

it is being typed and give immediate feedback.

2) It is easy to configure, as each rule has an expressive

description and can be turned on and off individually.

3) It can offer detailed error messages with helpful

comments, even explaining grammar rules.

4) It is easily extendable by its users, as the rule system

is easy to understand, at least for many simple but

common error cases.
5) It can be built incrementally, starting with just one rule

and then extending it rule by rule.

III. IMPLEMENTATION

The implementation of this system is divided into two parts

viz.:

1) Speech Recognition

2) Grammar Correction

To carry out both these steps, we will not be attempting

to break new ground. With a fair amount of academic research

in both these areas, we will use two existing solutions as

mentioned above.

Being Android project, the basic unit of work used is

Activity. Thus there are two activities separately for

speech recognition and grammar correction. The first

activity is responsible for recognizing the speech and

displaying it in the text form to the user. This displayed

text is the used as an input for the grammar correction

process in the second activity using LanguageTool.

Agreement between Indefinite Article and the

following word:

If the indefinite article is followed by a word whose

pronunciation starts with a vowel sound, an has to be

used instead of a. If it is one of a, e, i, o, u, the word

probably starts with a vowel - but there are exceptions

.

Here are some examples where the a,e,i,o,u rule applies,

together with the correct indefinite article:

a test, a car, a long talk

an idea, an uninteresting speech, an earthquake

Here are some exceptions:

a university, a European initiative

an hour, an honor

This type of correction was not possible to be implemented

by writing rules as mentioned above. We have used two text

files containing these exceptional words for „a‟ and „an‟ for

checking .Thus we created our own algorithm which works

as follows:

Algorithm:

Create a string array words[] to store space delimited

words of a sentence.

for i=0 to array.length-2 do

if

word precedes with „a‟ and starts with a vowel and if

it is not exception then replace „a‟ by „an‟.

if

word precedes with „a‟ and is an exception then

replace „a‟ by „an‟.

if

word precedes with „an‟ and it does not start a vowel

and if it is not exception then replace „an‟ by „a‟.

if

word precedes with „an‟ and is an exception then
replace „an‟ by „a‟.

IV. CONCLUSION

In this paper, a continuous speech recognition system
is built with grammar correction on the mobile Android
platform. Seeing from the experiment results, a limited-
vocabulary continuous speech recognition system which is
built based on the Sphinx system has good performance.

 Grammar correction capabilities are highly extensive
with exceptional performance. The error rate is almost
negligible when tested with wide range of incorrect
grammar sentences. Our ultimate aim would be to achieve
full scale English language recognition which is currently
limited because of limited processing power of handheld
devices. We plan to implement the present system on
other popular mobile platforms such as iOS, Blackberry,
and Windows Phone OS etc.

REFERENCES

[1] CMU Sphinx documentation wiki,

http://cmusphinx.sourceforge.net/wiki/

[2] Yun Wang; Xueying Zhang; , "Realization of Mandarin continuous

digits speech recognition system using Sphinx," Computer

Communication Control and Automation (3CA), 2010

International Symposium on , vol.1, no., pp.378-380, 5-7 May 2010

[3] LanguageModelingToolkit,

http://www.speech.cs.cmu.edu/SLM/toolkit_documentation.html
[4] Jun Yuan, “Optimization and application of the Viterbi algorithm

in HMM continuous speech recognition” electronic technique.

Shanghai, vol.2, pp.48-51, 2001.
[5] LanguageTool style and grammar checker

 http://www.languagetool.org/

[6] A rule based style and grammar checker

http://www.danielnaber.de/languagetool/download/style_and_gram

mar_checker.pdf

http://cmusphinx.sourceforge.net/wiki/
http://www.languagetool.org/
http://www.danielnaber.de/languagetool/download/style_and_grammar_checker.pdf
http://www.danielnaber.de/languagetool/download/style_and_grammar_checker.pdf

